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Diffusive Escape in a Nonlinear Shear Flow: 
Life and Death at the Edge of a Windy Cliff 
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The survival probability of a particle diffusing in the two-dimensional domain 
x > 0 near a "windy cliff" at x = 0 is investigated. The particle dies upon reach- 
ing the edge of the cliff: In addition to diffusion, the particle is influenced by a 
steady "wind shear" with velocity v(x,y)=vsign (y)~, i.e., no average bias 
either toward or away from the cliff. For this semi-infinite system, the particle 
survival probability decays with time as t-~/4, compared to t-t/2 in the absence 
of wind. Scaling descriptions are developed to elucidate this behavior, as well as 
the survival probability within a semi-infinite strip of finite width lYl < w with 
particle absorption at x = 0. The behavior in the strip geometry can be described 
in terms of Taylor diffusion, an approach which accounts for the crossover to 
the t - t / 4  decay when the width of the strip diverges. Supporting numerical 
simulations of our analytical results are presented. 

KEY WORDS: Survival probability; wind shear: Taylor diffusion. 

1. I N T R O D U C T I O N  

C o n s i d e r  a pa r t i c l e  w h i c h  diffuses in  the  semi- in f in i t e  p l a n a r  d o m a i n  

( x >  0, y)  a n d  is a b s o r b e d  w h e n  x =  0 is reached .  T h e  l ine x = 0  c a n  be  

v iewed  as a "cl iff"  a n d  a b s o r p t i o n  a t  x = 0 c o r r e s p o n d s  to the  pa r t i c l e  fall- 

ing to its dea th .  F o r  th i s  sys tem,  it is well  k n o w n  t h a t  the  par t i c le  su rv iva l  

p r o b a b i l i t y  S( t )  decays  in t ime  as (see, e.g., ref. 1) 

X o 
S( t )  ~ (Dr)l~ 2 (1)  

He re  Xo is the  in i t ia l  d i s t a n c e  f r o m  the  pa r t i c l e  to  the  cliff a n d  D is the  

d i f fux ion  coefficient .  In  th i s  ar t ic le ,  we are  i n t e r e s t e d  in u n d e r s t a n d i n g  the  
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time dependence of  S(t) when the diffusing particle also experiences a 
"wind shear," defined as the velocity field v ( x , y ) = v ~ ,  for y > 0  and 
v(x, y ) =  - v ~  for y < 0 (Fig. 1). Our  primary result is that, al though there 
is no average bias either toward or away from the cliff, the survival prob- 
ability decays as t -1/4, compared to the t -~/2 decay in the absence of  the 
bias. This result is contrary to the naive intuition of  a faster decay, as wind 
shear enhances longitudinal (x) diffusion, which, from Eq. (1), should 
reduce the survival probability. More generally, our interest is in under- 
standing the interplay between macroscopically heterogeneous convection 
and diffusion on first-passage phenomena. The wind shear geometry is a 
relatively simple example of  such a system. In spite of  this simplicity, 
relatively unusual first-passage characteristics occur. 

Our  work is also complementary to a recent paper by Lee and Koplik 
(2) where the survival probability of  a particle in the same wind shear was 
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Fig. 1. Wind shear in two dimensions with a "cliff" at x=0. The underlying lattice (thin 
lines) is defined with y = 0 bisecting two horizontal rows of points. A typical particle trajectory 
in this system is sketched. If the particle strays below the curve y_~ -(Dx/v)~/2 (dashed), it 
is almost surely absorbed. The lower portion schematically shows the same trajectory plotted 
with x as a function of t. The distribution of segment lengths ti in this representation is 
proportional to t -3 /2  (see text). 
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considered, but in a "two-layer" system with y unbounded, and with absor- 
bing boundaries at x = 0 and at x - -L .  For this system, Lee and Koplik 
gave asymptotic arguments to show that the survival probability decays as 
e x p ( - t / T )  with T oc L. In comparison, for pure diffusion in the same 
domain, S ( t ) ~ e x p ( - t / T D ) ,  but with a decay time To oc L 2. Thus, in 
accord with intuition, wind shear decreases the survival probability in the 
two-layer system [although the functional form of S(t) is unchanged]. 
However, for the semi-infinite planar system, the wind shear has the 
opposite effect of enhancing the particle survival probability and moreover 
changes the decay exponent from 1/2 to 1/4. 

A fundamental aspect of diffusive motion in wind shear is that the 
particle spends relatively long periods of time exclusively in the region y > 0 
or y < 0 before returning to y = 0. In fact, the distribution of time intervals 
between successive crossings of y = 0  coincides with the first passage 
probability for a one-dimensional random walk to return to its starting 
point. Since this probability decays as  t -3/2, the particle has relatively long 
alternating flights where x increases or decreases linearly with time. For a 
particle which starts at the origin in an unbounded two-dimensional 
system, this structure for the longitudinal steps leads to the following 
unusual probability distribution in x at time t ~3'41, 

1 (2) ~ ( x , t ) - I d y P ( x , y , t ) o c  [(vt}2 x211/,_ 

Rather surprisingly, the probability distribution is peaked as x ~ +_ vt and 
is a minimum for x = 0. These unusual features are one manifestation of the 
classical arcsine law for long leads in one-dimensional random walk) s) The 
interplay between these long excursions and the absorbing boundary is 
responsible for many of the intriguing features of the particle survival 
probability. 

In Section 2 we define microscopic lattice rules to model a particle 
moving in a wind shear. Somewhat different behavior occurs if the under- 
lying diffusion is only in the y (transverse) direction compared to the 
underlying diffusion being isotropic. While the former case is in some sense 
simpler, it does not have a smooth limit as bias vanishes. To understand 
this basic limit, we therefore introduce a variant of the original model in 
which the underlying diffusion is spatially isotropic. This allows for a con- 
tinuum description of the process. The model with isotropic diffusion also 
provides useful insights in the limit as the bias vanishes. In Section 3 we 
present scaling arguments to determine the long-time behavior of S(t) for 
the semi-infinite planar system for the two basic cases of anisotropic and 
isotropic underlying diffusion. In Section 4 we apply the Taylor diffusion 
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description to determine the survival probability in a finite-width strip 
x > 0 and l Yl ~< w, with reflection at l Yl = w and absorption at x = 0. Our 
results for the strip are combined with crossover arguments to provide 
additional insights into the corresponding first-passage properties of the 
semi-infinite planar system. A salient feature of the survival probability in 
the strip geometry is the nontrivial dependence of the survival probability 
on the initial distance from the particle to the cliff, the velocity, and the dif- 
fusion coefficient. While the approaches presented in this paper are non- 
rigorous, our results appear to be asymptotically correct. However, it 
would be desirable to develop more rigorous approaches to account for the 
behavior of the survival probability. We conclude and discuss some open 
questions in Section 5. 

2. WIND SHEAR IN TWO D I M E N S I O N S  

Our system is a square lattice with x/> 0 and y = 0 defined to bisect 
the bonds which join the bot tom row in the upper half-plane to the top 
row in the lower half-plane (Fig. 1). With this construction, there are no 
sites with y = 0, and ambiguities associated with assigning hopping rates 
from these sites are avoided. The hopping rates from any site in the upper 
(lower) half-plane are spatially homogeneous. We consider two different 
hopping rules which correspond, respectively, to anisotropy and isotropy 
(for v ~ 0) in the underlying diffusive motion. 

For anisotropic diffusion, to account for a variable transverse dif- 
fusivity and longitudinal velocity, we define the following hopping rates to 
six neighbors of a given site. For sites in the upper-half-plane (Fig. 2a) 

P l , •  = ~(1 + v) Dy  

P,,o = �89 + v)(1 -- Dy) 
(anisotropic diffusion) (3a) 

P-I,+_.I =�88 --v) Dy 

P-1 .o  = �89 --  v)( 1 --  D:.) 

Here the subscript on Pr indicates vector displacement defined by the hop. 
In the lower half-plane, similar hopping rates exist, except with an opposite 
sign for v. With these rules, there is a diffusivity in the x direction whose 
magnitude depends on v and vanishes as v --* I. For the case of unit velocity 
and unit transverse diffusivity, these hopping rules reduce to a two-site 
neighborhood. This appears to be the simplest implementation for random 
walk modeling of diffusion in a wind shear. 

While the above hopping rule is suitable for most of our purposes, it 
leads to pathological behavior for v ~ 0 or for Dy-+ O. Because useful 
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(X+v)ly/4 
(l-v)Dy/4 ~'x//~_ (l+v)(i-D)/2 

(1-v)(1-O~)/2 
(l-v)D, U ~  (l+v)Dy/4 

(a) 

D-v/2 

, / ~  1-4D 
c ~  

D+v/2 

(b) 

Fig. 2. llustration of the microscopic rules for a single hopping event for (a) anisotropic and 
(b) isotropic diffusion. 

insights can be gained by considering the crossover to purely diffusive 
behavior  as v---, 0, we therefore define a second model  in which the under- 
lying diffusion is isotropic. For  sites in the upper  half-plane, we define the 
hopping rates (Fig. 2b) 

Po,+_I = D  

I) Pl,o=D+} 

/) 
P-I.o=D--~ 

Po, o = 1 - 4 D  

(isotropic diffusion) (3b) 

Clearly, these rules can be applied only for D < 1/4 and v < 1/2 to ensure 
positivity of all the hopping  rates. 
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In the cont inuum limit, the probabil i ty distribution in the anisotropic 
hopping model obeys the Fokke r -P l anck  equation, 

02c(x, y, t) Oc(x 'y ' t )  + v s i g n ( y )  OC(x'y' t)  D,. (4) 
Ot Ox = " 03, 2 

Here c(x, y, t) is the probabil i ty distribution at (x, y) at time t. The form 
of the convective term accounts for a bias along + x for y > 0 and a bias 
along - x  for y < 0. For  this anisotropic system, the appropr ia te  boundary  
condition is somewhat  counterintuitive. For  y > 0, c(x = 0, y, t) = 0, corre- 
sponding to no particles being introduced into the system. For  y < 0, once 
x = 0 is reached, a particle cannot  return to the domain x > 0 and therefore 
there is no boundary  condition for the half-range (x = 0 ,  y <0) .  The con- 
t inuum limit of  the isotropic hopping model is more  convenient, primarly 
because of a much simpler boundary  condition. The corresponding 
Fokke r -P l anck  equat ion for the probabil i ty distribution is 

Oc(x, y, t) Oc(x, y, t) 
+ v sign(y) = DV2c(x, y, t) (5) 

Ot Ox 

and the appropr ia te  boundary  condition is c(x = 0, y, t) = 0. We are typically 
interested in the situation where a particle starts at y = 0 some distance from 
the cliff, corresponding to the initial condition c(x, y, t = O) = 6 ( x -  Xo) 6(y), 
although it is also of interest to consider starting positions not at y = 0. 

Although Eqs. (4) and (5) are linear, the boundary  value problem is 
not elementary. Because we have been unable to solve this problem, we 
resort to scaling arguments  in the next section to determine the asymptot ic  
behavior  of  the survival probabil i ty with the above two realizations of wind 
shear. 

3. SURVIVAL  PROBABILITY IN THE PLANAR SYSTEM 

3.1. Wind  Shear wi th  Anisotropic Diffusion 

Consider now the survival probabil i ty of  a particle initially at (,,c o, 0) 
in the semi-infinite planar  system x > 0, with absorpt ion at x = 0. From 
numerical exact enumerat ion of the probabil i ty distribution for the case 
v = D y = l ,  it is evident that  the survival probabil i ty decays as t -~/4 
(Fig. 3). A relatively simple way to understand this result is to focus on 
those points where the particle trajectory crosses from y > 0 to y < 0 or vice 
versa. Since the transverse mot ion is a one-dimensional r andom walk, the 
probabil i ty distribution of times between successive crossings asymptoti-  
cally varies as / -3 /2 j l l  Consequently, the longitudinal displacement x(t)  
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Fig. 3. Time dependence of S(t), based on exact enumeration of the spatial probability 
distribution for two "'semi'-particles (each with weight 1/2) initially at (x 0, Yo)=( 16, + 1/2), 
in a planar semi-infinite system with v = 1 and anisotropic diffusion with D~. = 1, 1/4, and 1/16 
(upper to lower data sets). The dashed straight line has slope - 1/4. 

versus t is a L6vy flight which consists of "segments" ti whose lengths are 
distributed according to the above distribution (Fig. 1). 2 Here, the term 
"segment" refers to a connected portion of the trajectory with the y coor- 
dinate having the same sign. 

The existence of a finite observation time t, however, implies that the 
segment length distribution is necessarly cut off at this time. With this 
cutoff, the average segment length is given by ( t )  oc ~' t' x t ' - 3 ~  dt' oc t 1/2. 
Thus, as might be anticipated, a trajectory of t steps can typically be 
decomposed into v,I r oc x/~ segments, each of length x/~. At the segment 
level, the probability that the walk does not reach x = 0 is equivalent to 
particle survival. Since there are J~ independent segments, this no-return 
probability should therefore vary as 1 / x / ~ ,  which, in turn, is proportional 
to t-1/4, in accord with our observations. 

It is also instructive to consider the full dependence of S(t)  on 
microscopic parameters. For our system, S(t)  can only be a function of the 
basic variables x0, v, Dy, and t. Since S(t)  is dimensionless, it is convenient 

2 In the context of Levy flights, the survival probability has been considered using different 
approaches in ref. 5. 
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to introduce the following groupings with units of time tit =Xo/V and 
rn =xo/Dy, and write for the survival probability 

S(t)~f(~ll,-~o ) (6) 

A crucial fact is that the particle survival probability is governed by the 
difference in residence times within the regions y > 0 and y < 0. As written 
in the original arcsine law [Eq. (2)],  this difference is independent of Dy. 
Combining this with the fact that S ~ t -~/4, we find that the asymptotic 
form of S(t) reduces to 

S(I) OC(~)I/4=(XO~ 1/4~-~// 
(7) 

To justify this rather unexpected behavior, it is instructive to consider 
the survival probability on a finite-width strip (Section 4). For  a system 
with finite extent, lYl ~< w, w and Dy naturally appear in the combinat ion 
r =  w2/D,,. Since any finite value of  D:. leads to the same value of  r• as 
w-+ oo, it suggests that Eq. (7) should be independent of  D,,. Our  numeri- 
cal data support this conclusion (Fig. 3), as long as r H > r~,  so that there 
is mixing between the upper and lower half-planes, before significant 
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Fig. 4. Time dependence of (x(t)") TM (upper curves) and (y(t)') TM (lower curves) for 
n = 1, 2 for the distribution of surviving walks for the case v = D:, = 1 and x0 = I. The straight 
lines have slopes of 1 and 1/2. 
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absorption occurs. However, our data typically exhibit a very small and 
unexplained residual systematic dependence of S(t) o n  Dy.  

Another interesting aspect of the surviving particles is their spatial dis- 
tribution (Fig. 4). Numerically, the surviving particles are predominantly 
within a region whose mean longitudinal and transverse positions are given 
by ( x ( t ) )  oc t  and ( y ( t ) )  oct  u2. These results can be justified heuristi- 
cally. For walks to survive, there clearly must be a longer residence time in 
the upper half-plane than the lower half-plane. However, starting from 
(x, 0), a walk can tolerate a short excursion into the lower half-plane 
and still survive. If this excursion extends to a transverse distance 
y ~ - ( D x / v )  l/z, then the time required for the particle to return to "safety" 
(y > 0) becomes of the order of the time for the particle to be convected to 
the cliff. Thus, if the particle enters the region y < -(Dx/v)1/2, it is likely to 
be absorbed (Fig. 1 ). Since surviving particles must almost always be in the 
region y > - ( D x / v )  ~/'- and hence predominantly in the upper half-plane, 
this leads to the longitudinal displacement of the survivors being propor- 
tional to t. In a similar spirit, if the survivors are mostly in the upper half- 
plane, then their transverse dispersion can be governed only by diffusion, 
so that ( y ( t ) )  oc t 1/2. 

It is also worth noting that if ( x ( t ) )  oc t, then the typical value o f y  
for which absorption occurs is - ( D t / v )  I/2. Thus the two-dimensional 
system can be reduced to an effective one-dimensional transverse problem 
of a purely diffusing particle starting in the domain y > 0 with an absorbing 
boundary at - ( D t / v )  ~/2. This latter system has been extensively studied? It 
is known that S(t) oc t  -~ with e dependent on D and v in such a way that 
ct --. 1/2 for v ~ 0 and 0~ --. 0 for v ~ oo. This connection between the wind 
shear and one-dimensional moving boundary problems provides further 
evidence of a decay exponent for S(t)  in wind shear which is less that 1/2. 

3.2. W i n d  Shear  w i t h  Isotropic  D i f fus ion  

When the underlying diffusion is isotropic, the survival probability 
again decays as t -1/4 in the long-time limit (Fig. 5a). As might be anti- 
cipated, the effect of diffusion is subdominant with respect to convection in 
governing the" value of the exponent in the time dependence of S(t). 
However, for the isotropic system there is a crossover from diffusive 
behavior for small v to convective behavior as v becomes large. By applying 
scaling to determine the nature of this crossover, we also determine the 
dependence of S(t) on the physical parameters of the system. This aspect 

3 See, e.g., ref. 6. A pedagogical account is given in ref. 7. 
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Fig. 5. (a) Representative results for the time dependence of the S(t) based on exact 
enumeration of the probability distribution for a planar semi-infinite system with isotropic 
diffusion and (i) (V, Xo, D)=(0.2,1,  O.25), or Pe=0 .8 ,  (ii) (0.1,1,0.25), Pe=0 .4 ,  and 
(iii) (0.05, 1,0.25) or P e = 0 . 2  (lower to upper data sets, respectively). Plotted is S( t )Pe  -3/4 
versus ? = vt/Xo. The dashed line has slope - 1/4. (b) Schematic behavior for S(t) versus t on 
a double logarithmic scale with isotropic diffusion in the limit of Pe ,> 1. 
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merits emphasis, as there are important differences in the dependence of 
S(t) on system parameters with isotropic and anisotropic diffusion. 

For isotropic diffusion, the basic time scales of the system are 

x~ Xo 
rD = -~ ,  rll = --~-, r• =D/v~ (Sa) 

These times are, respectively, the characteristic time to diffuse to the cliff, 
the time to convect to the cliff, and the crossover time beyond which con- 
vection dominates over diffusion. It is convenient to measure these times in 
units of rll to give 

1 
~o = Pe, "~11 = 1, f • Pe (8b) 

where Pe = XoV/D is the P6clet number. In the case where Pe > 1, convec- 
tion becomes established before the particle can reach the cliff and the 
behavior is the same as that discussed previously for anisotropic diffusion. 
On the other hand, for Pe < 1, the fundamental times obey the inequalities 
~o < ~N < fx. Consequently, particle death at early times is determined by 
diffusion and it is only for t > f,_ that convective behavior sets in (Fig. 5b). 
In dimensionless units, the early-time decay has the form S( t )~  (Pe/~) ~/'-, 
with ? = vt/xo, while at late times the survival probability can be written as 
S(r ~ oo)~  A(Pe)~.--1/4. Matching these two asymptotes at f.,. = 1/Pe fixes 
the amplitude A(Pe), from which 

(pe) 3/4 XoVl/2 
S(t--* oo) oc .~I/""------T-=D3/4tl/4 (9) 

As shown in Fig. 5a, the long-data accord with scaling behavior predicted 
by Eq. (9). 

4. S U R V I V A L  IN THE S E M I - I N F I N I T E  STRIP  

It is instructive to examine the survival probability in the presence of 
wind shear in a semi-infinite strip of width [y[ ~< w. Because this system is 
effectively one "dimensional, the longitudinal motion asymptotically reduces 
to diffusion in one dimension. However, this motion is properly described 
by Taylor diffusion, which accounts for the interplay between diffusion and 
convection) 8J From this description, the form of the survival probability is, 
in principle, straightforward to deduce. It is then possible to infer proper- 
ties of the survival probability in the semi-infinite planar system by letting 
w--* oo. However, there is an unexpected subtlety in the behavior of S(t) 
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for the strip, which depends on the relation between Xo and w. The resolu- 
tion of this feature provides useful general insights about the nature of the 
survival probability. 

Taylor diffusion arises because the particle convects to the right while 
y > 0 and convects to the left when y < 0. Since this switching between y > 0 
and y < 0 is governed by diffusion, the longitudinal motion is also diffusive. 
The characteristic time to switch between right-going and left-going 
segments is the same as the time needed to diffuse between the regions 
y > 0  and y < 0  (or vice versa), namely, r •  w2/D. Therefore the step 
length of the effective longitudinal random walk is l ~  vz• and the corre- 
sponding Taylor diffusivity is given by DII ~ 12/rj_ ~ vZw'-/O. (8) 

With this characterization of the longitudinal motion, we now 
investigate the survival probability in the strip in terms of the two basic 
time scales % and r• First consider the limit rtl >> rj., which can be 
reexpressed as Xo >>/. Physically, many longitudinal segments are needed 
before the cliff is reached, or equivalently, the walk encounters the sides of 
the strip many times before reaching x = 0. Therefore, before any absorp- 
tion occurs, the trajectory has time to become truly one dimensional. Thus 
we conclude that the particle survival probability is given by the suitably 
adapted one-dimensional expression, 

S( t; x o >> l) ~ x ~  (D tl t)1/2 (10a) 

In terms of the basic time scales, this (dimensionless survival probability 
can be reexpressed as 

S( t; Xo >> l) ~ % (10b) (r•  I/2 

However, the converse limit rtt ,~r• ( x o a l )  is more relevant for 
understanding the survival probability in the planar system with wind 
shear. In this case, there is significant loss of probability by absorption at 
x = 0 before the sides of the strip play any role. Consequently, the survival 
probability should decay as (Xo/Vt) TM at short times, as in the semi-infinite 
planar system, and cross over to a decay of the form Bt  -~/2 when t ,~ r• 
(Fig. 6). By matching these two asymptotes at t = r  we determine the 
amplitude B and thereby find for the survival probability 

fTIIT• I/4 
s( t ;  Xo ~ l) oc \-?-j (11) 



Diffusive Escape in Nonlinear Shear Flow 

S(t) 

1011 

S(t) 

xo/o,, = x~/~, t 
(a) 

Fig. 6. 

1/4 
1 ~ f " - "  (x,/t) 

x,x• / t 2) i/4 

xi t 

(b) 
Schematic behavior for S(t) versus t on a double logarithmic scale for a finite strip 

of width w with anisotropic diffusion in the limits of (a) xo >>/and (b) Xo ~ L 

A noteworthy feature of (10) and (11) is the opposite dependences 
in w. While S(t; Xo >> l) oc 1/w, S(t;  x o ~ l) oc w 1/2 (and is also proportional 
to x~/4). In the latter case, S(t; Xo ~ l) must be increasing in w for there to 
be a slower time dependence in S(t; Xo ~ 1) when w = or. The changeover 
from (10) to (11) as x o becomes smaller than / can  be viewed as arising by 
xo "sticking" a t / .  This occurs because after one Taylor diffusion step, the 

822/82/3-4-26 
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walk is either absorbed or is reintroduced at a distance of order l from the 
absorber. In the time 3• ~ w2/D required for this reintroduction, only a 
fraction (Xo/W• 1/4 of the walks remain. Consequently, 

/ \ 1/4 
~0 

S(t; Xo '~ l) ~ S(t; Xo ~>/)1.,-,, =, x { ) 
\ w •  

XIo/4W 1/2 

oc (Dr)I~ 4 (12) 

Notice also that the limiting expressions for S(t)  for Xo ~> l and Xo ~ l both 
become of order w/(Dt)  ~/2 when Xo~-l. This provides a useful self-con- 
sistency check on our approach. 

5. D I S C U S S I O N  

We have investigated the behavior of the survival probability for a dif- 
fusing particle with a planar absorbing boundary, or cliff, in the presence 
of a superimposed "wind shear." Although this velocity field does not have 
any bias either toward or away from the cliff, the long-time behavior of the 
survival probability S(t) is strongly affected by the wind shear. Our 
primary result is that S(t) oc t  -1/4 for a semi-infinite plane, compared to a 
decay of t -  i/2 for the survival probability in the absence of bias. Although 
our approaches are neither rigorous nor microscopic, they provide a good 
quantitative account of simulation results. It is worth noting that the image 
method, which yields the survival probability in the presence of a planar 
absorber for both diffusion and uniform convection, does not appear to be 
generalizable to wind shear. 

Our prediction for the survival probability has applicability beyond 
the case of wind shear. Consider, for example, a particle diffusing with 
superimposed linear shear, v(x, 3')= vyx, and with absorption at x - -0 .  For 
this system, exact enumeration of the probability distribution in a lattice 
version of the system shows that the survival probability decays as t-1/4.(9) 
This result is also supported by the heuristic segment argument given in 
Section 3.1, which suggests that S(t) oc (rll/t) TM, where 311, now the typical 
time to convect from x 0 to the cliff in shear flow, is determined by 
v(Dzil) 1/2 ril = Xo. Thus for the linear shear, our scaling approach predicts 
the following asymptotic dependence of the survival probability on model 
parameters: 

S(t) oc (Dt) -1/4 (13) 
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In fact, we believe that the t -~/4 decay should hold for any velocity field 
with v . , . ( y ) = - v , . ( - y ) .  For  example, for power-law shear v ( x , y ) =  
vy lyl p -  ~ N, the asymptotic form 

X v D )  ,/t2(p+ 2)3 S(t)  oz (Dt) -1/4 (14) 

is expected. Notice that only in the case of  wind shear ( f l = 0 )  is S(t)  
independent of D. Another situation for which unusual behavior of  S(t)  
can be anticipated is stratified random flow 4 in which v,.(y) is a random 
zero-mean function of  y. In this case, there could be different behavior for 
S(t) in a typical configuration of  the velocity field and when averaged over 
all configurations of  velocities. 

It would also be desirable to develop more rigorous and microscopic 
approaches to understand the first-passage characteristics of  systems with 
various types of  neutral bias fields. For  the case of wind shear, the distinct 
nature of the problem for y > 0 and y < 0 suggests that the Wiener -Hopf  
technique may be suitable. This technique has been successfully applied to 
a related problem involving first passage in the presence of colored 
noise. (~-'~ However, we have been unable to apply this method to our 
problem. 
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